Insulin Induces the Expression of the SHARP-2/Stra13/DEC1 Gene via a Phosphoinositide 3-Kinase Pathway

Received for publication, February 14, 2003, and in revised form, April 28, 2003
Published, JBC Papers in Press, June 7, 2003, DOI 10.1074/jbc.M301597200

Kazuya Yamada‡§, Hiroko Kawata§, Zhangfei Shou¶, Tetsuya Mizutani‡§, Tamio Noguchi, and Kaoru Miyamoto‡§

From the §Department of Biochemistry, Fukui Medical University, ¶Core Research for Evolutional Science and Technology, Japan Science and Technology, Fukui 910-1193, and the ‡Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

The feeding of a high carbohydrate diet including dextrin, sucrose, or glucose leads to an elevation in blood glucose levels and the secretion of insulin from pancreatic ß-cells. Insulin binds to an insulin receptor on the plasma membrane of target organs including liver, adipose tissue, and muscle, thus activating downstream signaling pathways (1, 2). This results in an increase in the influx of blood glucose into adipose tissue and muscle cells. It has recently been reported that glucose or its metabolites, such as glucose-6-phosphate and glucosamine, also regulate gene transcription in the liver, pancreatic ß-cells, and muscle, respectively (3). Therefore, two pathways are activated as the result of feeding a high carbohydrate diet that affect gene expression; one is an insulin-direct pathway and the other a glucose-dependent pathway. Both the L-type pyruvate kinase (LPK) and Spot 14 genes are well known models for glucose-dependent gene regulation in the liver (4, 5). Similar nucleotide sequences in the regulatory region of these two gene promoters have been identified and are designated as the carbohydrate response element (ChoRE) (6, 7). This consists of two copies of an imperfect palindromic E box sequence (5′-CAGGG-3′) separated by 5 bp and is able to confer glucose-dependent transcriptional activation to the heterologous promoters (4). Uyeda and coworkers (8) purified a ChoRE-binding protein (ChREBP) and identified it as the Williams-Beuren syndrome critical region 14 protein. We also purified a protein that binds to the ChoRE of the rat LPK gene promoter (9). However, the issue of whether our purified protein is identical to ChREBP is unclear because the amino acid sequence of the protein has not yet been determined. The mapping of ChoRE on the rat fatty acid synthase (FAS) gene distal promoter has recently been reported, and its nucleotide sequence resembles the ChoRE of both the LPK and Spot 14 genes (10).

Generally, the E box sequence (5′-CANNTG-3′) is found in the transcriptional regulatory region of a number of genes and controls the transcription of these genes in biological events, including development, cell differentiation, cell growth, and oncogenesis (11). The basic helix-loop-helix (bHLH) transcription factors, with or without a leucine zipper motif, bind to the E box and regulate transcription positively or negatively (11). The rat enhancer of split- and hairy-related protein-2 (HPRT2) belongs to the bHLH transcription factor family (12). Mouse and human orthologs have also been cloned and are referred to as the stimulation of retinoic acid 13 (Stra13) and differentiated embryonic chondrocytes 1 (DECR1), respectively (13, 14). These proteins are expressed ubiquitously and bind to the E box sequence. It has been reported that both Stra13 and DECR1 act as transcriptional repressors via interactions with the histone deacetylase HDAC1 or with the basal transcription factor TFIIIB (15, 16).

In this study, we report on the isolation of SHARP-2 cDNA as a ChoRE-binding protein of the rat FAS gene using a yeast

The feeding of a high carbohydrate diet including dextrin, sucrose, or glucose leads to an elevation in blood glucose levels and the secretion of insulin from pancreatic β-cells. Insulin binds to an insulin receptor on the plasma membrane of target organs including liver, adipose tissue, and muscle, thus activating downstream signaling pathways (1, 2). This results in an increase in the influx of blood glucose into adipose tissue and muscle cells. It has recently been reported that glucose or its metabolites, such as glucose-6-phosphate and glucosamine, also regulate gene transcription in the liver, pancreatic β-cells, and muscle, respectively (3). Therefore, two pathways are activated as the result of feeding a high carbohydrate diet that affect gene expression; one is an insulin-direct pathway and the other a glucose-dependent pathway. Both the L-type pyruvate kinase (LPK) and Spot 14 genes are well known models for glucose-dependent gene regulation in the liver (4, 5). Similar nucleotide sequences in the regulatory region of these two gene promoters have been identified and are designated as the carbohydrate response element (ChoRE) (6, 7). This consists of two copies of an imperfect palindromic E box sequence (5′-CAGGG-3′) separated by 5 bp and is able to confer glucose-dependent transcriptional activation to the heterologous promoters (4). Uyeda and coworkers (8) purified a ChoRE-binding protein (ChREBP) and identified it as the Williams-Beuren syndrome critical region 14 protein. We also purified a protein that binds to the ChoRE of the rat LPK gene promoter (9). However, the issue of whether our purified protein is identical to ChREBP is unclear because the amino acid sequence of the protein has not yet been determined. The mapping of ChoRE on the rat fatty acid synthase (FAS) gene distal promoter has recently been reported, and its nucleotide sequence resembles the ChoRE of both the LPK and Spot 14 genes (10).

Generally, the E box sequence (5′-CANNTG-3′) is found in the transcriptional regulatory region of a number of genes and controls the transcription of these genes in biological events, including development, cell differentiation, cell growth, and oncogenesis (11). The basic helix-loop-helix (bHLH) transcription factors, with or without a leucine zipper motif, bind to the E box and regulate transcription positively or negatively (11). The rat enhancer of split- and hairy-related protein-2 (HPRT2) belongs to the bHLH transcription factor family (12). Mouse and human orthologs have also been cloned and are referred to as the stimulation of retinoic acid 13 (Stra13) and differentiated embryonic chondrocytes 1 (DECR1), respectively (13, 14). These proteins are expressed ubiquitously and bind to the E box sequence. It has been reported that both Stra13 and DECR1 act as transcriptional repressors via interactions with the histone deacetylase HDAC1 or with the basal transcription factor TFIIIB (15, 16).

In this study, we report on the isolation of SHARP-2 cDNA as a ChoRE-binding protein of the rat FAS gene using a yeast
one-hybrid system. Hepatic expression of SHARP-2 mRNA both in vivo and in vitro under various nutritional and hormonal conditions was analyzed. The findings indicate that SHARP-2 is an insulin-inducible transcription factor and that the transcriptional stimulation of the rat SHARP-2 gene by insulin is mediated by a phosphoinositide 3-kinase (PI3K) pathway.

EXPERIMENTAL PROCEDURES

Materials—The yeast one-hybrid system, pACT2, and ExpressHyb hybridization solution were purchased from Clontech (Palo Alto, CA). Streptozotocin (STZ) was obtained from Wako Pure Chemical Industries (Osaka, Japan). Biowhittaker’s media, human insulin, and human insulin receptor were purchased from Lilly Japan K. K. (Kobe, Japan). Collagenase was purchased from Yakult (Tokyo, Japan). Type I collagen-coated dishes were purchased from Asahi Techno Glass (Chiba, Japan). Williams’ medium E, dexamethasone (dex), Dulbecco’s modified Eagle’s medium (DMEM), insulin, ornithine, L-arginine, and 10% fetal bovine serum were purchased from Sigma. The TRIZOL reagent and Superscript II were purchased from Life Technologies (Gaithersburg, MD). The BcaBest DNA labeling kit and pUC119 were purchased from Biobasic (Toronto, Ontario, Canada). The Big Dye terminator cycle sequencing kit FS was purchased from Applied Biosciences. The HNP10 Bioscience. The BcaBest DNA labeling kit and pUC119 were purchased from Asahi Techno Glass (Chiba, Japan). Williams’ medium E supplemented with 10% fetal bovine serum, 100 units/ml penicillin G, 100 μg/ml streptomycin, and 0.5 μM dex at a 37 °C, 5% CO2 incubator. After 4 h, the medium was supplemented with serum- and glucose-free DMEM supplemented with 2 mM sodium pyruvate, antibiotics, and 0.5 μM dex. After 24 h, the medium was changed to the indicated one in the presence or absence of insulin.

RNA Extraction—Total RNA was extracted from rat livers or primary cultured hepatocytes using the TRIZOL reagent. Total RNA (10 μg/lane) was subjected to a 0.8% denaturing agarose gel electrophoresis and then transferred to a Biodyne membrane. The filter was prehybridized in ExpressHyb hybridization solution at 68 °C for 30 min and then hybridized with a 32P-labeled probe and 20 μg/ml heat-denatured herring testis DNA for 1 h. After washing at 50 °C in 0.1 × 0.15 M NaCl/0.15 M sodium acetate (SSC), 0.1% SDS, the filter was exposed to a FUJIX imaging plate (Kanagawa, Japan). Hybridization signals were detected and quantified with the FUJIX BAS-2000 image analyzing system.

The pUC119-FAS was a generous gift from Dr. Nobuko Iritani (Tezukayama Gakuen University, Sakai, Japan). A 1.1-kb EcoRI/BglII fragment of the pF3, a 1.3-kb EcoRI fragment of the pGKs, a 1.9-kb PstI/DraI fragment of the pLPK57, a 1.8-kb EcoRI fragment of the pUC119-FAS, and a 1.2-kb PstI fragment of the pUC18-PEPCK were used as the probes for SHARP-2, glucokinase (GK), LKP, FAS, and phosphoenolpyruvate carboxykinase (PEPCK), respectively (23–25). For cDNA cloning mouse 36B4, a ribosomal protein, reverse transcription-polymerase chain reaction was carried out using oligonucleotides, 5′-ATGCGC-TAGCGCCATGTGCCACAGGCTGTCAC-3′ and 5′-TAATGGGCTGACCCCTGTTGACATCGAGGA-3′ were annealed, phosphorylated, and ligated into the SpeI site of the pRw95–1 or XbaI site of the plasmid pLacZ1 plasmids to obtain 6 × FASChoRE-HIS3 and 6 × FASChoRE-LacZ, respectively.

Yeast Transformation and Analysis—The reporter yeast strain, yFAS, was transformed with the pACT2. yLHR harboring both the LPKChoRE-LacZ, and yFAS were employed as positive control and isolated a plasmid named pF3. We first determined the yeast library was described previously (18). Oligonucleotides 5′-CTAGCTTCCTGCATGTGCCACAGGCTGTCAC-3′ and 5′-CTAGAGGGGTGACCCCTGTTGACATCGAGGA-3′ were annealed, phosphorylated, and ligated into the SpeI site of the pRw95–1 or XbaI site of the plasmid pLacZ1 plasmids to obtain 6 × FASChoRE-HIS3 and 6 × FASChoRE-LacZ, respectively. Yeast strains were sequentially transformed with both reporter plasmids. The construction of the rat liver cDNA library was described previously (18). The reporter yeast strain, yFAS, was transformed with a rat liver cDNA library using a high efficiency transformation method (19). When 2.1 × 106 colonies were screened on histidine-, tryptophan-, leucine-, and uracil-free synthetic dextrose plates supplemented with 1 mg/ml 3-aminotriazole, one reproducible HIS3- and LacZ-positive clone was obtained. A plasmid, pF3, was isolated from the yeast library.

The pF3 plasmid was described previously (18). Oligonucleotides 5′-CTAGCTTCCTGCATGTGCCACAGGCTGTCAC-3′ and 5′-CTAGAGGGGTGACCCCTGTTGACATCGAGGA-3′ were annealed, phosphorylated, and ligated into the SpeI site of the pRw95–1 or XbaI site of the plasmid pLacZ1 plasmids to obtain 6 × FASChoRE-HIS3 and 6 × FASChoRE-LacZ, respectively. YM4271 cells harboring both the 3′-CTAGCCACGGTCCGCCCAG-3′ and 5′-TTAGTCGAAGAGACCGAATCC-3′ were annealed, phosphorylated, and ligated into the SpeI site of the pRw95–1 or XbaI site of the plasmid pLacZ1 plasmids to obtain 6 × FASChoRE-HIS3 and 6 × FASChoRE-LacZ, respectively. YM4271 cells were transformed with these plasmids. yLHR harboring both the pRw95–1-LHR and pLacZ1-LHR, yEbox harboring both the 3′ E box-HIS3 and 3′ E box-LacZ, LPK harboring both the 6 × LPKChoRE-HIS3 and 6 × LPKChoRE-LacZ, respectively. FASChoRE-HIS3 and 6 × FASChoRE-LacZ, respectively. YM4271 cells were transformed with these plasmids. yLHR harboring both the pRw95–1-LHR and pLacZ1-LHR, yEbox harboring both the 3′ E box-HIS3 and 3′ E box-LacZ, LPK harboring both the 6 × LPKChoRE-HIS3 and 6 × LPKChoRE-LacZ, respectively. FASChoRE-HIS3 and 6 × FASChoRE-LacZ, respectively. YM4271 cells were transformed with these plasmids. yLHR harboring both the pRw95–1-LHR and pLacZ1-LHR, yEbox harboring both the 3′ E box-HIS3 and 3′ E box-LacZ, LPK harboring both the 6 × LPKChoRE-HIS3 and 6 × LPKChoRE-LacZ, respectively.
porter plasmids inserted six copies of the ChoRE of the rat FAS copies of the E box sequence, respectively.

hormone receptor gene, the ChoRE of the rat LPK gene, and three the early growth response gene-1-binding site of the rat luteinizing hormone receptor gene, the ChoRE of the rat LPK gene, and three copies of the E box sequence, respectively.

was transformed with the pF3, the yeasts continued to show a low β-galactosidase activity (Fig. 1). These results indicate that a protein that is expressed from the pF3 specifically binds to the ChoRE of the rat FAS gene.

We then determined the nucleotide sequence of the pF3 and searched for similar sequences in the GenBank™ data base. The results showed that it was similar to the nucleotide sequence of rat SHARP-2, mouse Strai3, and human DEC1 cDNAs (12–14). The nucleotide sequence of the pF3 contained from 240 base upstream of the initiation codon to 964 base downstream that of rat SHARP-2. Two bases, “ga,” in the coding region were replaced with “ag.” The differences cause the replacement of the lysine residue at 133 with an arginine residue. The rat SHARP-2 protein consists of 411 amino acid residues and belongs to the bHLH protein family (12). The region where we cloned the amino acid sequence between residues 1 and 322 contains the bHLH domain. It has been reported that DEC1 binds to the E box sequence (16). We then examined the issue of whether SHARP-2 encoded by the pF3 binds to another ChoRE or the E box sequence. When two reporter yeast strains, yLPK and yEbox, which harbor six copies of the ChoRE of the rat LPK gene promoter or three copies of the E box sequence, respectively, were transformed with the pACT2, they showed low β-galactosidase activities (Fig. 1). When the yLPK reporter yeast was transformed with the pF3, the yeasts continued to show a low β-galactosidase activity (Fig. 1). In contrast, when the yEbox was transformed with the pF3, high β-galactosidase activity was observed. These results indicate that SHARP-2 also binds to the E box sequence but not the ChoRE of the LPK gene promoter.

Regulation of Gene Expression of SHARP-2 in the Rat Liver—
We then examined the expression and regulation of rat SHARP-2 mRNA in the rat liver under various nutritional and hormonal conditions. During starvation for 48 h, both glycolysis and lipogenesis are repressed and gluconeogenesis is induced in the rat liver. In contrast, the administration of a high carbohydrate diet to starved rats induces both glycolysis and lipogenesis and represses gluconeogenesis. As shown in Fig. 2A, Northern blot analysis revealed that the level of SHARP-2 mRNA increased in the livers of refed rats. An increase in the level of SHARP-2 mRNA is rapid and was observed at least 3 h after the administration of a high carbohydrate diet. At 3, 6, and 16 h after refeeding a high carbohydrate diet, the levels of SHARP-2 mRNA increased to 3.5-, 4-, and 8-fold, respectively. The time course for the increase was followed by an increase in FAS and LPK mRNA levels, and the initial time course of SHARP-2 mRNA was similar to changes in the levels of GK mRNA and PEPCK mRNA. In contrast, the levels of 36B4 mRNA were unchanged in these rat livers.

We next examined the issue of whether expression of SHARP-2 mRNA is regulated in a circadian fashion. Rats fed freely with laboratory chow or starved rats were sacrificed at 6:00, 12:00, 18:00, and 24:00, and the levels of hepatic SHARP-2 mRNA were determined. As shown in Fig. 2B, the level of SHARP-2 mRNA was low at 12:00 and gradually increased, reaching a maximum level at 6:00. In contrast, the level of PEPCK mRNA was low at 6:00, reached a maximum level at 12:00, and then gradually decreased. In the case of the starved rat livers, the levels of SHARP-2 mRNA were lower than those of the freely fed rat livers (Fig. 2C). Only the level was increased at 24:00. In contrast, the levels of PEPCK mRNA were high. The levels were gradually and slightly decreased at 24:00. In these rat livers, the levels of 36B4 mRNA were unchanged. These results suggest that the expression of the SHARP-2 gene is mainly regulated by diet, although diet-independent regulation was observed.

We then determined whether insulin regulates the level of SHARP-2 mRNA. Diabetes mellitus was induced in rats by administering STZ. In the diabetic rat liver, gene expressions of glycolytic and lipogenic enzymes are suppressed and that of
Insulin-inducible Transcription Factor

gluconeogenic enzyme is active. The administration of insulin to the diabetic rats causes alterations of these gene expressions. As shown in Fig. 2D, the level of SHARP-2 mRNA was low in the diabetic rat liver and increased in insulin-administered diabetic rat liver. At 0.5, 1, and 2 h after administering insulin, the level of SHARP-2 mRNA increased to 2-, 2-, and 3-fold, respectively. In these processes, the level of GK mRNA was induced and that of PEPCK mRNA was decreased. The levels of both LPK and FAS mRNAs were marginal at this time. In these rat livers, the levels of 36B4 mRNA were unchanged.

It is known that insulin directly regulates gene expression via the insulin receptor signaling pathway and that glucose or its metabolite also regulates gene expression (3). In vivo analysis does not distinguish whether an accumulation of SHARP-2 mRNA is dependent upon either insulin or glucose or both. Because of this, we employed primary cultured rat hepatocytes to determine whether insulin or glucose is involved in the accumulation of SHARP-2 mRNA. As shown in Fig. 3A, in primary cultured rat hepatocytes the levels of SHARP-2 mRNA in the presence of 0, 5, and 25 mM glucose were increased by 2-, 2-, and 3-fold by insulin, respectively. Insulin led to an increase in the level of SHARP-2 mRNA even in the absence of glucose. This indicates that insulin directly induces the accumulation of SHARP-2 mRNA. In addition, this effect was dose-dependent and the optimum concentration of insulin was 10 nM (Fig. 3B). In contrast, the level of 36B4 mRNA remains unchanged under all conditions. We then examined the time course for the induction of SHARP-2 mRNA under optimum conditions. An increase in the level of SHARP-2 mRNA by insulin was observed from 1 to 6 h. An increase in GK mRNA and a decrease in PEPCK mRNA were observed in similar time course (Fig. 3C). The levels of 36B4 mRNA remained unchanged.

Insulin Stimulates Accumulation of SHARP-2 mRNA via a PI3K Pathway—Insulin binds to the insulin receptor on the plasma membrane, induces receptor tyrosine kinase activity, and phosphorylates insulin receptor substrates; the signal is then conferred downstream of the PI3K and ras/raf-1/mitogen-activated protein kinase pathways. We then examined the issue of which insulin signaling pathway is involved in an accumulation of SHARP-2 mRNA. Inhibitors of protein kinases or phosphatase involved in the insulin signal transduction pathways were added to the medium in primary cultured rat hepatocytes. Although both wortmannin and LY294002 blocked the accumulation of SHARP-2 mRNA, rapamycin, staurosporine, PD98059, and okadaic acid had no effects (Fig. 3D). Both wortmannin and LY294002 also blocked the down-regulation of PEPCK mRNA by insulin. In contrast, the level of 36B4 mRNA was unchanged by treatment with all reagents. These results indicate that a PI3K pathway mediates the accumulation of SHARP-2 mRNA by insulin.

We then examined the issue of whether cAMP represses an accumulation of SHARP-2 mRNA by insulin. By the addition of 8-bromo-cAMP in the absence or presence of insulin to primary cultured rat hepatocytes, the levels of PEPCK mRNA were increased but those of both SHARP-2 and 36B4 mRNAs were unchanged. In addition, actinomycin D, an inhibitor of RNA polymerase II, inhibited the accumulation of SHARP-2 mRNA. These results suggest that cAMP neither stimulates the accumulation of SHARP-2 mRNA nor interferes with the effects of...
Insulin stimulates transcription of the rat SHARP-2 gene. Diabetic rats were treated without or with insulin. Control (DM) and insulin-treated rats (DM + INS) were sacrificed at zero time and 2 h after insulin treatment, respectively. Nuclei were isolated from the pooled livers of two rats in each group. Nuclear run-on assays were carried out as described under “Experimental Procedures.” Three independent experiments were carried out. SHARP-2, enhancer of split- and hairy-related protein-2; PEPCK, phosphoenolpyruvate carboxykinase.

In insulin and that insulin may act at the transcription level of the rat SHARP-2 gene.

Insulin Stimulates Transcription of the Rat SHARP-2 Gene—We further examined the issue of whether the rapid accumulation of SHARP-2 mRNA as the result of treatment with insulin is regulated at the transcription level of the rat SHARP-2 gene. We compared the transcription rate of the rat SHARP-2 gene between control diabetic rat liver and insulin-treated diabetic rat livers for 2 h. By treatment with insulin, transcription rate of the rat SHARP-2 gene was induced by 5.1-fold (±2.9) (Fig. 4). Under the same conditions, the transcription rate of the rat PEPCK gene was decreased to ~47% (±3.3%). This result indicates that insulin acts at the transcription level of the rat SHARP-2 gene.

DISCUSSION

We cloned SHARP-2 cDNA as a ChRE-binding protein of the rat FAS gene. The ChRE of the FAS gene is nearly identical to that of the LPK gene, and a common factor is suggested to bind to the ChRE of the two genes (10). However, the yeast one-hybrid assay showed that SHARP-2 interacts with the ChRE of the FAS gene but not with that of the LPK gene. These results suggest that SHARP-2 is not involved in the common regulation of both genes. Further studies will be required to address this problem.

SHARP-2 is involved in the control of the proliferation and/or differentiation of chondrocytes, nerve cells, fibroblasts, and T cells (12–14, 28). It has been reported that the human form, DEC1, and another isoform, DEC2, are expressed in the suprachiasmatic nucleus in a circadian fashion and function as regulators of the mammalian molecular clock (29). Furthermore, the expression of SHARP-2 mRNA was induced by cAMP, hypoxia, serum starvation, and TGF-β (15, 16, 30–33).

This study focused on an analysis of the regulation of hepatic expression of the rat SHARP-2 gene. The level of SHARP-2 mRNA increased by refeeding a high carbohydrate diet to normal rats or the administration of insulin to diabetic rats. The time course for the increase in SHARP-2 mRNA levels showed that it was followed by an increase in the levels of FAS and LPK mRNAs; the initial time course of SHARP-2 mRNA was similar to changes in the levels of GK mRNA and PEPCK mRNA (Fig. 2). Insulin alone induced the level of SHARP-2 mRNA via a PI3K pathway in primary cultured rat hepatocytes (Fig. 3). The downstream signal may be protein kinase B but not atypical protein kinase C and the mammalian target of rapamycin, because inhibitors of the latter two signaling molecules were not effective. In addition, the administration of insulin to diabetic rats stimulated the transcription rate of the rat SHARP-2 gene in the liver (Fig. 4). Therefore, SHARP-2 is an insulin-inducible bHLH transcription factor.

It is known that both the forkhead in rhabdomyosarcoma (FKHR) and the sterol regulatory-element-binding protein (SREBP)-1c mediate insulin action in the liver (34). In the case of FKHR, it mediates insulin action directly or indirectly (35, 36). Insulin causes the phosphorylation of the serine residue at 256 of FKHR via a PI3K/protein kinase B/Akt pathway. Phosphorylated FKHR dissociates from the cognate sequence, is translocated from the nucleus to the cytoplasm, and represses the transcription of the target gene promoter, such as the insulin-like growth factor-binding protein-1 gene (35). It has been also reported that FKHR functions as a corepressor of hepatocyte nuclear factor 4 (HNF4) and that phosphorylation of FKHR by insulin causes the dissociation of HNF4, which then activates transcription (36). In contrast, SREBP-1c, a bHLH transcription factor, is selectively expressed in liver and fat tissue (37). The overexpression of SREBP-1c both in vivo and in vitro causes the stimulation of glycolysis and lipogenesis via the activation of the GK gene (37, 38). However, the mechanism for this remains unknown (39, 40). It has been reported that insulin acts at the transcription level of the rat SREBP-1c gene and induces the level of SREBP-1 c mRNA in primary cultured rat hepatocytes. The time course for the induction was slower than that of SHARP-2 mRNA (41). Thus, this raises the possibility that the SREBP-1c gene as well as the GK and PEPCK genes are downstream genes of SHARP-2. Indeed, an E box sequence was found in accessory element 3 of glucocorticoid response unit of the rat PEPCK gene. Two imperfect E boxes separated by 5 bp also exist just downstream of the transcription initiation sites of the gene (42, 43). A functional E box sequence is also present in the regulatory region of both the rat GK and SREBP-1c genes, respectively (44, 45). Further studies will be required to address the issue of whether SHARP-2 directly represses transcription from the rat PEPCK gene promoter or activates transcription from the rat GK and SREBP-1c gene promoters. It has been reported that SHARP-2 physically interacts with the components, such as TBP and TFIIB, of the basal transcription machinery and recruits the histone deacetylase 1-Sin3A-NcoR co-repressor complex through their carboxyl-terminal repression domains (15).

SHARP-2 also interacts with the DNA-binding domain of upstream stimulatory factor (USF), a bHLH protein, and inhibits DNA-binding and USF-mediated transactivation (46). Therefore, SHARP-2 may regulate the transcription of these genes via mechanisms in which it not only binds to the E box sequence but also interferes with the activity of other bHLH proteins. Recently, Strα3-deficient mice were generated, and it has been shown that Strα3 is a key regulator of lymphocyte activation that is vital for maintenance of self-tolerance and the constraint of autoimmunity (28). Thus far, whether gene expressions of metabolic enzymes and insulin-related transcription factors are normal or not has not been reported.

The transcription rate of the rat SHARP-2 gene was stimulated by insulin. Thus, it is likely that the promoter region of the rat SHARP-2 gene contains the insulin response sequence. The molecular cloning of the rat SHARP-2 gene and detailed analysis of the regulatory elements of the gene will be required to address these questions.

Acknowledgments—We thank Drs. Michael Schweiner and Nobuko Iritani for providing plasmids and Drs. Haruhiko Osawa and Wataru Ogawa as well as Kaoru Matsura and members of the Miyamoto laboratory for helpful discussion and technical assistance. We are also grateful to Dr. Daryl K. Granner for providing a plasmid and critical reading of the manuscript.
REFERENCES