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Abstract The influence of the enhancer of split- and hairy-
related protein-2 (SHARP-2) transcriptional repressor on the
expression of rat phosphoenolpyruvate carboxykinase (PEPCK)
gene was examined. When H4IIE cells were treated with epigal-
locatechin gallate, a green tea constituent, an increase in
SHARP-2 mRNA levels and a decrease in PEPCK mRNA levels
were observed. The adenovirus-mediated overexpression of
SHARP-2 in H4IIE cells and primary cultured rat hepatocytes
led to a decrease in the levels of PEPCK mRNA. Finally, when
a SHARP-2 expression plasmid was transiently transfected with
various reporter plasmids into MH1C1 cells, the promoter activ-
ity of a PEPCK reporter plasmid was specifically decreased.
Based on these findings, we conclude that SHARP-2 is a poten-
tial repressor of PEPCK gene expression.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Rat enhancer of split- and hairy-related protein-2

(SHARP-2, also referred to as the Stra13 or DEC1) is a basic

helix–loop–helix transcriptional repressor [1–6]. While

SHARP-2 mRNA is expressed ubiquitously, its expression

is regulated in a cell-type specific manner [1–3]. We previ-

ously reported that the levels of hepatic SHARP-2 mRNA

are increased when a high-carbohydrate diet is fed to normal

rats or when insulin is administered to diabetic rats [7]. Un-

der these conditions, both glycolysis and lipogenesis are in-

duced and gluconeogenesis is repressed. In addition, the
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increase in SHARP-2 mRNA levels by insulin is mediated

by a phosphoinositide 3-kinase (PI 3-K) pathway in primary

cultured rat hepatocytes, and insulin stimulates the transcrip-

tion of the rat SHARP-2 gene in the liver [7]. Insulin also in-

duces the expression of the SHARP-2 gene in both 3T3-L1

adipocytes and L6 myotubes [8]. In 3T3-L1 adipocytes, the

induction of SHARP-2 gene expression by insulin is also

mediated by a PI 3-K pathway [8]. These findings raise the

possibility that an insulin-inducible transcriptional repressor,

SHARP-2, mediates the insulin-dependent transcriptional

repression of gluconeogenic enzyme genes. The phosphoenol-

pyruvate carboxykinase (PEPCK) gene is a good candidate

for a SHARP-2-target gene: Its expression is stimulated by

fasting signals, such as glucagon (via cyclic AMP) and dexa-

methasone (Dex), and is inhibited by insulin; a PI 3-K path-

way is involved in insulin action, and insulin inhibits

transcription of the rat PEPCK gene [9,10].

In the present study, we evaluated the role of SHARP-2 on

PEPCK gene expression. An elevation in the level of

SHARP-2 mRNA by (�)-epigallocatechin gallate (EGCG),

the adenovirus-mediated overexpression of SHARP-2, and

the co-transfection of a SHARP-2 expression vector with a

PEPCK gene promoter linked to the firefly luciferase reporter

plasmid led to a decrease in both PEPCK mRNA levels and

PEPCK gene promoter activity.
2. Materials and methods

2.1. Materials
Dulbecco�s modified Eagle�s medium (DMEM), Williams� medium

E, Dex, and EGCG were purchased from Sigma Chemical Co. (Saint
Louis, MO). Collagenase was purchased from Yakult (Tokyo, Japan).
Type I collagen-coated dishes were purchased from Asahi Techno
Glass (Chiba, Japan). The TRIZOL reagent, RNase inhibitor, Super-
script III, and Lipofectamine PLUS reagent were purchased from
Invitrogen (Groningen, The Netherlands). The ExTaq DNA polymer-
ase and BcaBest DNA labeling kit were obtained from Takara
BIOMEDICALS (Kyoto, Japan). The pCI-neo, pGEM-T Easy,
pGL3-Basic, pRL-CMV, and dual luciferase reporter assay system
were obtained from Promega (Madison, WI). The Big Dye terminator
cycle sequencing kit FS was purchased from Applied Biosystems Japan
(Tokyo, Japan). The Adeno-X expression system, Adeno-X rapid titer
kit, ExpressHyb hybridization solution, pbgal-Basic, rat genome walk-
er kit, and Advantage-GC Genomic polymerase chain reaction (PCR)
kit were purchased from Clontech (Palo Alto, CA). The Virakit Ade-
no4 was obtained from Virapur LLC (San Diego, CA). [a-32P] dCTP
(110 TBq/mmol) was purchased from Amersham Biosciences (Cleve-
land, OH). The Invisorb plasmid kit was purchased from Invitek
(Berlin, Germany).
blished by Elsevier B.V. All rights reserved.
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2.2. Cells, cell culture, and animals
Rat H4IIE hepatoma cells were a generous gift from Dr. Daryl K.

Granner (Vanderbilt University, USA). Rat MH1C1 hepatoma cells
were purchased from the American Type Culture Collection (Manas-
sas, VA). These cells were grown in DMEM supplemented with 10%
fetal bovine serum and antibiotics at 37 �C in a 5% CO2 incubator.
Hepatocytes were freshly isolated from a male Sprague-Dawley rat
liver (6 weeks of age, 170–190 g body weight) using a collagenase per-
fusion method [11]. Cells (105 cells/cm2) were plated on type I collagen-
coated dishes and cultured in Williams� medium E supplemented with
10% fetal bovine serum, 100 units/ml penicillin G, 100 lg/ml strepto-
mycin, and 1 lM Dex at a 37 �C, 5% CO2 incubator. After 4 h, the
medium was replaced with serum-free DMEM supplemented with
antibiotics and 1 lM Dex. After 24 h, the medium was replaced with
fresh medium and the cells were infected with adenovirus as described
below.

2.3. Preparation of adenovirus
Fragments of SHARP-2 cDNA were prepared using the reverse

transcription-PCR [12]. One lg of rat liver total RNA was employed
as the starting material. Combinations of oligonucleotides, EcoMet-
SHARP-2, 5 0-CCGGGAATTCCCATGGAGCGGATCCCCAGC-
3 0, and MluSHARP-2AS, 5 0-GGTGGGGGGCTCTTCAGATTC-30,
and SHARP-2-1112, 5 0-CACGGACGCAGGTTCACCGTGG-30,
and SHARP-2-1555AS, 5 0-CCGGTCTAGATTAGTCTTTGGTTTC-
TAAGTTTAAAGG-3 0, were used as primers. The former product
was digested with EcoRI and MluI, and the latter with MluI and XbaI.
These fragments were subcloned into the EcoRI/XbaI sites of the pCI-
neo to give pCI-neo/SHARP-2. After confirmation of the nucleotide
sequence of the insert, a NheI/NotI fragment of the resulting plasmid
was subcloned into the NheI/NotI sites of the pShuttle to obtain pShut-
tle/SHARP-2. The production of an adenovirus expressing SHARP-2
was preformed according to the manufacturer�s recommended proto-
col. The AdCMV-b Gal, an adenovirus expressing Escherichia coli b-
galactosidase, was a generous gift of Dr. Donald K. Scott (Louisiana
State University Health Sciences Center) [13]. The preparation and
titration of the adenovirus were carried out using Virakit Adeno4
and Adeno-X rapid titer kits, respectively.

2.4. Preparation of total RNA and Northern blot analysis
A 10-cm dish was seeded with 2 · 106 H4IIE cells. After 24 h, the

medium was replaced with serum-free DMEM supplemented with or
without 1 lM Dex and then cultured for another 24 h. To analyze
the effects of EGCG on SHARP-2 and PEPCK mRNA levels, the cells
were treated with the indicated concentrations of EGCG for various
times. In the case of adenovirus infection, each adenovirus was infected
with the indicated multiplicity of infection (m.o.i.) and cultured for an
additional 48 h.
Total RNA was prepared from these cells using the TRIZOL re-

agent. Total RNA (10 lg/lane) was subjected to 0.8% denaturating
agarose gel electrophoresis, then transferred to a Biodyne membrane
(ICN Biomedicals, Inc., Glen Cove, NY), and UV-crosslinked for fix-
ation. The ExpressHyb hybridization solution was used for prehybrid-
ization and hybridization at 68 �C. After washing twice at 50 �C for
30 min with 0.1· SSC and 0.1% SDS, the filter was exposed to a FU-
JIX imaging plate. Hybridization signals were detected with the FU-
JIX BAS-2000 imaging analyzing system.
The intensity of bands corresponding to SHARP-2, PEPCK, LacZ,

and ribosomal protein 36B4 (36B4) mRNAs was quantified. The mean
and standard error of the ratio of the intensities between SHARP-2
and 36B4 and between PEPCK and 36B4, respectively, was calculated.
Statistical differences in mRNA levels were determined by an ANOVA
analysis.
2.5. Probe DNAs
The probes for SHARP-2, PEPCK, and 36B4 have been described

previously [7]. For the preparation of the LacZ probe, oligonucleo-
tides, 5 0-ATGTCGTTTACTTTGACCAACAAG-3 0 and 5 0-
CGCGTAAAAATGCGCTCAGGTC-30, were used as primers. The
pbgal-Basic plasmid was employed as a template. The PCR product
was subcloned into the pGEM-T Easy vector to give pGEM-T Easy
LacZ. After confirmation of the nucleotide sequence, an approximately
0.6-kb EcoRI fragment was used as the probe. These probe DNAs
were labeled with [a-32P] dCTP using the BcaBest DNA labeling kit.
2.6. Construction of reporter plasmids
Oligonucleotides, 5 0-CCGGACGCGTGAATTCCCTTCTCAT-

GACCTTT-3 0 and 5 0-AGATCTCAGACCGTCTCGCC-3 0, which
correspond to the promoter region of the rat PEPCK gene, and 5 0-
GGATCCCCCACTATTCACAAG-3 0 and 5 0-CCGGAAGCTTAAG-
GACTTCCGCACTAACGG-3 0, which correspond to the promoter
region of the rat glucokinase (GK) gene, were synthesized [14]. PCR
was performed using a rat genome walker kit and the above combina-
tions of primers. The PCR conditions have been described previously
[15]. Each PCR product was digested with MluI and BglII or BamHI
and HindIII, then a 536-bpMluI/BglII fragment and a 326-bp BamHI/
HindIII fragment were subcloned into the MluI/BglII or BglII/HindIII
sites of the pGL3-Basic to give prPEPCK/Luc and prGK/Luc, respec-
tively. The pMPK287/Luc and pmZHX1/Luc59 plasmids have been
described previously [12,16].
The nucleotide sequences of all inserts were confirmed.

2.7. Transient DNA transfections and luciferase reporter assays
MH1C1 cells were co-transfected with 200 ng of reporter plasmid,

100 ng of pRL-CMV and 100 ng of cytomegalovirus enhancer/pro-
moter-directed expression vectors. All plasmids used for transfection
were prepared using the Invisorb plasmid kit, followed by CsCl density
gradient ultracentrifugation. The transfection conditions and luciferase
reporter assays have been described previously [16,17].
3. Results

3.1. Effects of EGCG on expression of SHARP-2 and PEPCK

mRNAs

In the rat liver and primary cultured rat hepatocytes, the

time course for the increase in SHARP-2 mRNA levels follow-

ing treatment with insulin coincided with that for the decrease

in PEPCK mRNA levels [7]. It has recently been reported that

EGCG decreases the level of PEPCK mRNA in H4IIE cells

[18]. To examine the possible role of SHARP-2 in regulation

of PEPCK gene expression, we initially examined the effect

of EGCG on the expression of the SHARP-2 gene by North-

ern blot analysis. H4IIE cells were treated with various concen-

trations of EGCG for 4 h. The level of SHARP-2 mRNA

increased in a dose-dependent manner (Fig. 1A), reaching a

plateau at 25 lM. The mRNA level was 3.2-fold higher than

that in the absence of EGCG (Fig. 1A). In contrast, the level

of PEPCK mRNA was decreased in a dose-dependent manner,

as described previously [18], and the level of 36B4 mRNA re-

mained essentially unchanged (Fig. 1A). The time course for

the increase in SHARP-2 mRNA levels at 25 lM of EGCG

was then analyzed (Fig. 1B). The level of SHARP-2 mRNA

gradually increased, reaching a maximum level at 2 h, and this

level was maintained for periods of up to 6 h. In contrast, the

level of PEPCK mRNA was decreased in a time-dependent

manner and the level of 36B4 mRNA remained essentially un-

changed (Fig. 1B).

EGCG thus increases the level of SHARP-2 mRNA and de-

creases PEPCK mRNA levels.
3.2. Overexpression of SHARP-2 mRNA decreases the level of

PEPCK mRNA

We then examined the effect of the overexpression of

SHARP-2 on PEPCK gene expression. When H4IIE cells

were treated with Dex, the level of PEPCK mRNA increased

by 11.3-fold (Fig. 2A). In contrast, the level of SHARP-2

mRNA was not altered. An adenovirus expressing SHARP-

2 or b-galactosidase was infected into the cells in the presence

of Dex. As expected, the size of the SHARP-2 mRNA derived



Fig. 1. Effects of EGCG on SHARP-2 and PEPCK mRNA levels. Total RNAs (10 lg) were analyzed. The probes used are shown on the left. Each
experiment was carried out at least three times. Photos of representative data are shown. The mean and standard error of the ratio of the mRNA
levels of SHARP-2 or PEPCK and 36B4 mRNAs (ribosomal protein 36B4, used as a loading control) is plotted on the bottom. The value of the ratio
in the absence of EGCG was set to 1. (A) H4IIE cells were treated for 4 h with the concentrations of EGCG indicated on the top. (B) Time course for
alterations in the levels of SHARP-2 and PEPCK mRNAs by EGCG. Cells were cultured in the presence of 25 lM EGCG for the times indicated on
the top.
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from the adenovirus was smaller than that of the endogenous

SHARP-2 mRNA (because of differing 5 0- and 3 0-untrans-

lated regions), and its expression was dependent on infection

by the adenovirus SHARP-2. When the exogenous SHARP-

2 mRNA was overexpressed, the level of PEPCK mRNA

was decreased in a dose-dependent manner. At m.o.i. 5, the

level of PEPCK mRNA was decreased by 41.4%. In contrast,

when the cells were infected with AdCMV-Gal expressing b-
galactosidase, the level of PEPCK mRNA was not altered.

Under all conditions, the levels of 36B4 mRNA remained un-

changed. Basically the same results were obtained when pri-

mary cultured rat hepatocytes were infected by the viruses

(Fig. 2B).

These results indicate that the overexpression of SHARP-2

decreases the level of PEPCK mRNA.

3.3. SHARP-2 represses transcription from the rat PEPCK gene

promoter

We finally examined effects of SHARP-2 on the PEPCK

gene promoter. MH1C1 cells were employed for the transient

transfection experiments. A cytomegalovirus enhancer/

promoter-directed SHARP-2 expression plasmid was co-

transfected with several reporter plasmids into MH1C1 cells.

Nucleotide sequences between �467 and +69 of the rat

PEPCK gene, between �309 and +17 of the rat GK gene,

between �287 and +17 of the rat pyruvate kinase M gene,

and between �59 and +50 of the mouse zinc-fingers and

homeoboxes 1 gene were inserted into a luciferase reporter

plasmid to give plasmids prPEPCK/Luc, prGK/Luc,

pMPK287/Luc, and pmZHX1/Luc59 respectively. When the

pCI-neo plasmid, an empty vector for the SHARP-2 expres-

sion plasmid, was transfected with the reporter plasmid, the

relative luciferase activity was set to 1. As shown in Fig. 3,

when prPEPCK/Luc, which contains all the elements re-
quired for hepatic expression and hormonal regulation, was

co-transfected with pCI-neo/SHARP-2, the luciferase activity

was decreased by 46%. In contrast, when other reporter plas-

mids were co-transfected with the pCI-neo/SHARP-2, the

luciferase activities remained unchanged. SHARP-2 therefore

specifically affects the transcription of the PEPCK gene

promoter.
4. Discussion

The potential role of SHARP-2 in the regulation of the rat

PEPCK gene was investigated. The level of SHARP-2

mRNA rapidly increased when H4IIE cells were treated with

EGCG (Fig. 1). The expression of SHARP-2 mRNA is reg-

ulated in a cell-type specific manner by a variety of stimuli,

including insulin, cyclic AMP, gonadotropins, serum starva-

tion, transforming growth factor-b, and hypoxia [2,3,5–

7,19,20]. Thus, EGCG can be also added to the list. It

remains to be determined whether EGCG increase transcrip-

tion of the rat SHARP-2 gene, or instead act at a post-tran-

scriptional level to affect mRNA stability. Since we previously

cloned the rat SHARP-2 gene [21], a detailed analysis of the

regulatory elements of the gene will be required to address

this question.

The dose-dependency and time-course of the increase in

SHARP-2 mRNA levels were reciprocal to those for the de-

crease in PEPCK mRNA levels (Fig. 1B). In addition, the

adenovirus-mediated overexpression of SHARP-2 decreased

the level of PEPCK mRNA in both H4IIE cells and primary

cultured rat hepatocytes (Fig. 2). The levels of SHARP-2

mRNA induced by the virus infection were much higher

than those seen after treatment with EGCG, yet the effect

on PEPCK expression was less. Presumably higher levels



Fig. 2. Adenovirus-mediated overexpression of SHARP-2 mRNA in
H4IIE cells and primary cultured rat hepatocytes inhibits Dex
induction of PEPCK mRNA. The procedures and abbreviations are
the same as those shown in the legend for Fig. 1. Cells were infected
with adenoviruses (Ad-SHARP-2 and Ad-bgal) at the m.o.i. indicated
on the top, and then cultured for another 48 h. LacZ, Escherichia coli
b-galactosidase. For panel (A), H4IIE cells were cultured in serum-
free DMEM without or with 1 lM Dex as indicated. Each exper-
iment was carried out three times. For (B), hepatocytes were cultured
with serum-free DMEM and 1 lM Dex. Each experiment was carried
out twice.

Fig. 3. Transcriptional regulation by SHARP-2. MH1C1 cells were co-
transfected with a luciferase reporter plasmid, an expression vector for
SHARP-2 or control, and the pRL-CMV plasmid as control for
transfection efficiency. The prPEPCK/Luc, prGK/Luc, pMPK287/
Luc, and pmZHX1/Luc59 plasmids were used as luciferase reporters.
Plasmid pCI-neo/SHARP-2 encodes a full-length SHARP-2 and the
pCI-neo plasmid is a control empty vector. A value of 1 was assigned
to the promoter activity of each reporter plasmid in the presence of
pCI-neo. Each column and bar represents the mean and standard error
of three transfection experiments.
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are required to overcome the strong positive effect of the

Dex treatment of the virus-infected cells. The level of

PEPCK mRNA, but not of SHARP-2 mRNA, was in-

creased by Dex in H4IIE cells, indicating that a decrease

in the level of SHARP-2 mRNA is not required to increase

PEPCK mRNA. These findings, therefore, suggest that only

when the level of SHARP-2 mRNA increases can the

expression of the PEPCK gene be regulated.

SHARP-2 specifically repressed the transcription of the rat

PEPCK gene promoter, a well-known promoter that is re-

pressed by insulin (Fig. 3) [22]. The rat PEPCK gene pro-

moter consists of at least two insulin response sequences

(IRSs) as negative regulatory elements. One is a distal

IRS, 5 0-TGGTGTTTTG-3 0 and the other is a proximal

IRS, which has not been precisely characterized [23]. It

has been reported that FOXO1 or a related protein mediates

the insulin regulation of the transcription from the distal

IRS of the PEPCK gene [24]. Although FOXO1 or a related

protein bind to and activate the distal IRS of the PEPCK

gene promoter, protein kinase B (PKB)/Akt activated by

insulin stimuli phosphorylates these proteins and leads to

transcriptional inactivation and exclusion of the proteins

from the nucleus [25–27]. As a result, PEPCK gene tran-

scription is repressed. This mechanism would appear to ac-

count for the insulin regulation of PEPCK gene

transcription. However, there are no FOXO1-binding sites

in the proximal IRS of the PEPCK gene promoter, indicat-

ing that one or more other proteins must be involved in the

insulin regulation of PEPCK gene transcription [28]. To

fully understand the physiological regulation of PEPCK

gene expression by insulin, the identification and analysis

of transcription factors other than FOXO1 or a related pro-

tein will be required. It has recently been reported that the

sterol regulatory element-binding protein-1c (SREBP-1c)

mimics the insulin regulation of PEPCK gene transcription

[29,30]. SREBP-1c inhibits PEPCK gene transcription via

two elements which are located between nucleotide se-

quences �590 and �581, and between �322 and �313

which is accessory element 3 of the glucocorticoid response

unit of the rat PEPCK gene [30]. SREBP-1c is also an insu-

lin-inducible bHLH transcription factor [31]. Although a PI

3-K/PKB/Akt pathway is involved in the increase of

SREBP-1c and SHARP-2 mRNA caused by insulin treat-

ment, the time-course for the increase in SREBP-1c mRNA

in rat hepatocytes is slower than that of SHARP-2 mRNA

[7,31,32]. This suggests that SHARP-2 may be a more

important factor in the rapid transcriptional repression of

the PEPCK gene.

SHARP-2 functions as an E box-binding protein [6,33].

Accessory element 3 of the glucocorticoid response unit of

the rat PEPCK gene contains an E box sequence that overlaps

an SREBP-1c-binding sequence [30,34]. In addition, two

imperfect E boxes in the proximal IRS region are also present

just downstream from the transcription initiation sites of the

gene [35]. The issue of whether SHARP-2 directly binds to

these cis-acing elements of the rat PEPCK gene promoter

and represses its transcription, or whether a function of

SHARP-2 as a repressor is directly linked to insulin action

on the PEPCK gene promoter, remains to be determined. In

addition to the characterization of the effects of SHARP-2

on PEPCK gene regulation, a modification of SHARP-2 or

an alteration of its transcriptional activity by insulin or EGCG
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can also be envisaged. The precise identification of the

SHARP-2-responsive element on the rat PEPCK gene pro-

moter by co-transfection experiments with the proximal IRSs

of the PEPCK gene, as well as development of effective anti-

body, will be required to address these questions.
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